Eurographics Symposium on Rendering 2025 COMPUTER GRAPHICS forum
B. Wang and A. Wilkie Volume 44 (2025), Number 4
(Guest Editors)

Reshadable Impostors with Level-of-Detail
for Real-Time Distant Objects Rendering

X. Wu*'®, Z. Zeng*?®, 5. Zhut'® and L. Wang'®

ISchool of Software, Shandong University, China
2University of California, Santa Barbara, USA

Impostor .F MSE: 0.00271 Edited Albedo

Brightness x10

Edited Roughness Edited Metallic

Figure 1: Our Reshadable Impostors with Level-of-Detail (RiLoD) provides efficient proxies for distant objects with complex geometry. In
this DEER scene, rendered under environment lighting and a single area light, we demonstrate that RiLoD achieves higher geometric fidelity
and more faithful material reproduction compared with multi-card billboards and traditional impostors. Additionally, our method supports
material editing, which is typically infeasible with conventional image-based approximations.

Abstract

We propose a new image-based representation for real-time distant objects rendering: Reshadable Impostors with Level-of-
Detail (RiLoD). By storing compact geometric and material information captured from a few reference views, RiLoD enables
reliable forward mapping to generate target views under dynamic lighting and edited material attributes. In addition, it sup-
ports seamless transitions across different levels of detail. To support reshading and LoD simultaneously while maintaining a
minimal memory footprint and bandwidth requirement, our key design is a compact yet efficient representation that encodes and
compresses the necessary material and geometric information in each reference view. To further improve the visual fidelity, we
use a reliable forward mapping technique combined with a hole-filling filtering strategy to ensure geometric completeness and
shading consistency. We demonstrate the practicality of RiLoD by integrating it into a modern real-time renderer. RiLoD deliv-
ers fast performance across a variety of test scenes, supports smooth transitions between levels of detail as the camera moves
closer or farther, and avoids the typical artifacts of impostor techniques that result from neglecting the underlying geometry.

CCS Concepts
* Computing methodologies — Rendering; * Rendering — Real-Time Rendering;

1. Introduction

i Corresponding author: zhujunqiu@mail.sdu.edu.cn. Photo-realism is becoming increasingly crucial for interactive ap-
i Corresponding author: luwang_hcivr@sdu.edu.cn. plications such as video games, simulations, and visualizations.
* Dual First Authors.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-

ciation for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which

permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0000-4900-3374
https://orcid.org/0000-0001-9025-9427
https://orcid.org/0000-0003-3023-4329
https://orcid.org/0000-0002-2248-3328

20f9 X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering

One of the key aspects of achieving photo-realism is the use of
highly detailed geometry, along with dynamic and sophisticated
lighting. However, this pursuit of geometric and lighting complex-
ity inherently conflicts with the demands of real-time performance
in interactive applications.

The straightforward way to facilitate real-time performance
while maintaining photo-realistic fidelity is to pre-compute and use
simplified representations of distant objects with complex geome-
try. One popular solution is to pre-render the complex object from
multiple reference views into image textures — an image-based rep-
resentation commonly referred to as an impostor of the original
object. During rendering, target views can then be generated effi-
ciently through interpolation.

To support reshading under dynamic lighting, geometry buffers
(G-buffers) such as depth, normals, and material attributes can also
be baked alongside the image textures. This enables deferred shad-
ing in target views using the interpolated G-buffers. Furthermore,
the level-of-detail (LoD) technique can be integrated by organiz-
ing multiple impostors of different resolutions into a hierarchical
structure and switching between levels based on the object’s dis-
tance to the camera. As a result, aliasing artifacts can be alleviated,
and memory bandwidth consumption can be reduced.

While reshading and LoD each offer significant benefits indi-
vidually, supporting both techniques simultaneously can be chal-
lenging, as each level of LoD requires storing a complete set of G-
buffers for multiple reference views. This results in a large memory
footprint and high bandwidth consumption, limiting scalability and
efficiency of the impostors.

Moreover, when generating results of target views, simple in-
terpolation can introduce noticeable visual artifacts such as dither-
ing, blurring, or shading inconsistencies, especially when the tar-
get viewing angle deviates significantly from the reference views.
These artifacts arise because the interpolation process inherently
disrespect the actual geometry — it simply blends view-dependent
attributes across reference images without reasoning about self-
occlusions or geometry structure.

In this paper, we propose a new image-based representation for
real-time distant objects rendering, RiLoD — Reshadable Impostors
with Level-of-Detail.

To efficiently support both reshading and LoD, we draw inspi-
ration from the recent trend of replacing full G-buffer storage with
lightweight visibility buffers [BH13]. Specifically, instead of stor-
ing full material attributes, we propose to store only a compact ma-
terial ID and UV per sample for each reference view at each LoD
level. This significantly reduces the memory footprint and band-
width requirements associated with supporting both reshading and
LoD, while still enabling accurate shading through deferred mate-
rial attributes lookup during rendering.

To reduce visual artifacts caused by neglecting the underlying
geometry — as is common in methods that relies on interpolation,
inspired by the forward mapping technique used in Image-Based
Rendering (IBR) [SCKO08], we propose a forward mapping strat-
egy that projects all reference views directly into the target view.
This geometry-aware process respects view-dependent visibility
and avoids incorrect blending across surfaces. However, forward

mapping may lead to coverage gaps due to limited sampling or oc-
clusion. To address this, we propose a hybrid hole-filling strategy
that combines a novel Joint Bilateral Filling algorithm with a Thin
Detector [AMD22], which identifies under-covered regions and se-
lectively applies robust inpainting to preserve shading and structure
consistency.

We integrate RilLoD into a real-time renderer and evaluate it
across a range of scenarios. It supports accurate reshading un-
der dynamic lighting and target viewing conditions and enables
smooth LoD transitions without noticeable popping or inconsisten-
cies, while achieving real-time performance. Finally, both quan-
titative (MSE and LPIPS) and qualitative results show that our
approach produces significantly fewer visual artifacts than prior
impostor-based techniques.

In summary, our main contributions are as follows:

e anew impostor variant that supports both reshading and LoD for
real-time distant objects rendering.

e a compact storage design for geometry and material to reduce
the necessary memory footprint and bandwidth.

e anew forward mapping technique as well as a hole-filling strat-
egy specially designed for impostors to generate target views
with better visual fidelity.

2. Related Work

Traditional and Optimization-Based Representation Scene rep-
resentations in computer graphics are generally categorized into
explicit and implicit types. Explicit methods, such as point
clouds [LPC*00], polygonal meshes, and voxel grids [LC98], di-
rectly describe surfaces, making them easy to render and edit. How-
ever, they are storage-intensive when representing complex scenes.
In contrast, implicit representations, like metaballs [Bli§2] and
signed distance fields (SDFs) [FPRJ0O0], define geometry through
functions. These enable flexible topologies and efficient ray inter-
section, although they necessitate sampling to extract surfaces.

With the rise of deep learning and optimization techniques,
representation methods have significantly improved in both effi-
ciency and expressiveness. PointNet and PointNet++ [QSMG17;
QYSGI17] process point clouds using neural networks, while
DeepSDF [PES*19] leverages latent codes to compactly encode
SDFs. Neural Radiance Fields (NeRF) [MST*21] models radi-
ance fields for high-quality novel view synthesis, which has been
further refined by [MRS*21; BMT*21]. 3D Gaussian Splatting
(3DGS) [KKLD23] accelerates rendering with explicit global rep-
resentations. However, obtaining full radiance fields remains costly,
resulting in trade-offs between quality and speed.

Level-of-Detail for Representation Level-of-Detail is crucial
for rendering complex scenes efficiently. Early work focused on
Shader LoD [HFTF15; Conl7], with systems automatically gen-
erating simpler shader programs by reducing computations or tex-
ture lookups, allowing rendering to scale from detailed close-ups
to cheaper distant views. Olano et al. [OB10] introduces LEAN
Mapping, filtering specular highlights in bump and normal maps,
enabling the use of standard MIP and anisotropic filtering hard-
ware. Extending this, Dupuy et al. [DHI*13] introduced LEADR

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering 30f9

Mapping, a reflectance filtering technique that achieves level-of-
detail on displacement-mapped surfaces by utilizing mipmapped
displacement gradients to compute an anisotropic Beckmann dis-
tribution for physically-based microfacet BRDFs.

Proxy-Based Representation The radiance of a light field can
be captured from various positions and directions under different
lighting and temporal conditions. However, acquiring a full light
field representation is expensive. Several methods have been pro-
posed to transform this global problem into a local one by seg-
menting the light field into multiple proxies.

Image-Based Rendering (IBR)[SCKOS] represents the light field
by establishing associations among reference images and utilizing
image groups. Pulli et al.[PHC*97] employed a stereo camera sys-
tem to represent a scene and proposed a multi-view interpolation
method to integrate information from the stereo system for novel
view rendering. Pfister et al.[PZVGO0] introduced a surfel-based
rendering approach that leverages hierarchical forward warping and
visibility splatting to achieve efficient interactive rendering of com-
plex geometries. Mildenhall et al.[MSO*19] utilized a multiplane
image (MPI) representation of the scene and employed neural net-
works to integrate local light field information, producing high-
quality results efficiently.

Billboards [MBO5], derived from IBR, serve as a texture-based
representation commonly used in rendering pipelines to approxi-
mate complex geometry. In real-time rendering, they are frequently
employed for rendering complex objects such as flames, smoke,
explosions, clouds, and distant trees [Guy00; Fer*04; DKY*00;
KL16; DDSDO03]. Kawasaki et al. [KS02] proposed "microfacet
billboarding" to address the challenge of rendering intricately
shaped objects. Impostors [ForOl; DSSD99], a variant of bill-
boards, are generated by rendering complex geometry into an im-
age texture from a specific viewpoint, often replacing distant static
geometry to optimize performance. Szirmay-Kalos et al. [SALPOS]
introduced "distance impostors" to determine approximate ray in-
tersections, significantly accelerating rendering speeds while main-
taining the quality of global illumination effects. Ryan [Bru18] pro-
posed multi-card billboards and octahedral impostors, which store
directional information of the replaced objects to enable rapid ren-
dering from arbitrary viewpoints. Additionally, several impostor
techniques [Ris06; PMDS06; VKO06] incorporate ray-casting meth-
ods to enhance rendering quality, though this comes with increased
computational overhead. Apart from IBR, other approaches em-
ploy proxies to achieve localized light field representations. Zhu et
al. [ZBX*21] transformed complex lighting fixtures into proxies,
effectively decoupling intricate illumination effects from the scene.

3. Problem Analysis

Impostors [ForO1] are a type of geometric proxy technique de-
signed to simplify scene rendering by replacing objects that are
far from the viewpoint with image textures. This technique sig-
nificantly reduces rendering overhead by avoiding the expensive
computation and storage costs associated with the high geometric
complexity of distant objects.

A key limitation of traditional impostors is that they discard most

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

of the original geometric and material information of objects, pre-
venting accurate re-shading under novel lighting conditions. This
limits their flexibility in dynamic environments. To support re-
shading, geometry buffers (G-buffers) can also be baked into im-
age textures for each reference view, allowing the interpolated G-
buffers to be used in subsequent deferred shading pipelines. How-
ever, this often comes with increased memory footprint and band-
width consumption. This also means the specific material param-
eters of objects (such as reflectivity, roughness, etc.) are baked in
the image textures and cannot be flexibly edited during rendering.
This representation limits the ability to make real-time adjustments
to materials in dynamic environments.

Traditional impostors are also prone to noticeable aliasing ar-
tifacts, particularly when viewed up close or at oblique angles.
Also, although they reduce geometric complexity, they still incur
relatively high memory and bandwidth overhead due to the need
to store image textures from multiple reference views. A natural
extension to address these issues is to incorporate level-of-detail
(LoD) representations. By smoothly transitioning between impos-
tors at different resolutions or distances, LoD techniques not only
mitigate aliasing artifacts but also further reduce memory and band-
width consumption. This makes LoD techniques particularly effec-
tive for handling large-scale scenes with many distant objects or
rapidly changing viewpoints.

While both reshading and LoD offer clear advantages, combin-
ing the two within impostor-based systems introduces significant
challenges. Specifically, supporting reshading across multiple LoD
levels typically requires maintaining full G-buffer data for each ref-
erence view and each level of detail. This quickly leads to a sub-
stantial increase in memory and bandwidth consumption. As the
number of LoD levels and reference views grows, the scalability
of such representations becomes increasingly constrained, making
them less practical for large-scale, real-time applications.

Besides, traditional impostor techniques typically rely on simple
interpolation to generate target views. Due to the lack of underly-
ing geometric awareness, these methods often fail to reproduce the
full complexity of object shapes, especially in regions with self-
occlusion, sharp silhouettes, or high-frequency surface details.

Our goal is to support both reshading and LOD simultaneously,
while maintaining minimal memory footprint and bandwidth re-
quirements. In addition, we aim to improve visual quality by incor-
porating geometric awareness into the process, thereby reducing
visual artifacts.

4. Method

In this section, we present our Reshadable Impostors with Level-
of-Detail (RiLoD) for real-time distant objects rendering.

By encoding lightweight geometric and material information
from a limited number of reference views, RiLoD facilitates reli-
able forward mapping to synthesize target views under dynamic
lighting and edited materials. In addition, it supports seamless tran-
sitions across different levels of detail. As illustrated in Figure 2,
our pipeline consists of two main stages: 1) The input object is
processed to generate memory-efficient impostors, each containing

40f9

Impostor Representation

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering

Editable Reshading

Forward Mapping

{uv, Material ID}

Alpha Alpha

i
i
i
[
i

{uv, Material ID}

N
\

\ Reshading Y.

Hole-filling Filtering

3
Thin Detect

Filtered Geo and Mat

Joint Bila

Dynamic Lighting

® —

Edited Material Params

,-------------
o4

Figure 2: Pipeline overview. Left: We use orthogonal projections from multiple reference views around the input object to bake its geomet-
ric and material properties into the impostor representation, thereby constructing a corresponding LoD hierarchy. Right: The projection
transformation between the impostors and target views is applied to map the impostor data onto the target view. Hole-filling filtering is then
applied to refine the mapped result, and the filtered information enables re-shading with dynamic editing of lighting and materials.

both geometry and material properties; and 2) The impostors are
used as simplified proxies for the object, contributing to the subse-
quent rendering pipeline.

In Section 4.1, we detail the process of quickly “baking” the im-
postors and describe the types of data stored within them to support
re-shading. Section 4.2 discusses the rendering approach using im-
postors and explains how our method achieves artifact-free, real-
time rendering results.

4.1. Generating Impostors

To fully reproduce the complicity of the original objects, we store
the following information: 1) Geometric information: Including
normal vectors (i7), depth (d), and transparency a. These param-
eters capture the spatial position, orientation, and coverage of ob-
jects, enabling accurate representation at different LoD levels. 2)
Material information: Including UV coordinates (#v) and mate-
rial IDs, allowing for the accurate retrieval of the object’s albedo,
roughness, and metallic properties during shading. By combining
this geometric and material data, our method can reconstruct G-
buffer information, thus supporting high-quality shading. 3) Refer-
ence view information: Including view position (C;) and the trans-
formation matrix (P;) from impostor to world space. With these
view parameters, a correspondence between the impostors and the
target view can be established.

As shown in Figure 2 (left), our baking process is similar to tra-
ditional impostor methods. For each object, we first select a set of
viewpoints based on the bounding sphere of the object, then cache
the geometric and material data into textures set via orthogonal pro-
jection. The next challenge is to construct the LoD structure for the

impostor. To achieve this, we use a multi-resolution rendering strat-
egy, where each resolution corresponds to a different LoD level.
However, reducing resolution leads to a lower sampling rate, caus-
ing data loss and generating artifacts.

To address this issue, we propose a heuristic data compression
method aimed at reducing storage overhead while maintaining vi-
sual fidelity. Specific measures include:

e Depth: We retain the minimum depth value of four neighboring
pixels to ensure consistency in depth information.

e Normal vectors and UV coordinates: To eliminate erroneous
data, we filter the normal vectors using the von Mises-Fisher
distribution [Kar] while preserving depth information, and use
averaging for UV coordinates to reduce inaccuracies.

e Material IDs: We compress the material IDs of four neighboring
pixels into a single channel, thereby reducing storage require-
ments.

e Transparency: We average the transparency values of neighbor-
ing pixels to smooth out transparency variations.

Finally, the geometric and material properties (such as normal vec-
tors, depth, transparency, UV coordinates, and material IDs) are
stored in two separate textures. One texture encodes geometric in-
formation G {7, d, o}, while the other stores material information
M {uv, material IDs}. This method results in comparable storage
overhead to traditional impostor techniques, but with significant
improvements in accuracy and shading performance.

4.2. Editable Reshading

We have introduced how to construct impostors for the input ob-
jects, which will be used for editable reshading — i.e., reshading

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering 50f9

under dynamic lighting and modified material attributes — in the
target view. As shown on the right side of Figure 2, the information
from the impostors is passed to the target view through the forward
mapping pass, and the final rendering result is generated through
three stages: Forward Mapping, Hole-filling filtering and Reshad-
ing.

Forward Mapping. In this stage, our goal is to obtain the geo-
metric and material information of the target view from the impos-
tors. To ensure the accuracy of the mapping, we employ the forward
mapping technique from Image-Based Rendering (IBR) [SCKO8],
rather than traditional interpolation methods. The key to this pro-
cess is correctly projecting the information from the impostor to the
target view, ensuring data accuracy.

The forward mapping is calculated by the following formula:

{G. M} =P xP " x{G, M}

where G, M represent the mapped information in the target view, P,
is the transformation matrix from world space to target view. This
process reconstructs the world space information of the reference
using d and P;, and then completes the mapping according to 7;.

A common problem in the forward mapping pass is that the con-
tents of multiple impostors might be projected to the same position
in the target view, causing data conflicts. To solve this, we apply a
shallow depth pruning strategy. Specifically, we calculate the depth
of each impostor projected onto the target view and select the clos-
est impostor data to the viewpoint. This step ensures that the most
accurate impostor is selected during projection. Once the relevant
information from the impostor is determined, we directly map M
to M, replacing the depth d in G with the depth d in the target view
to construct G.

Through forward mapping based on camera and viewpoint ma-
trix transformations, the impostors can provide more accurate geo-
metric and material information compared to traditional interpola-
tion methods.

Hole-filling Filtering. Although the forward mapping pass re-
trieves a large amount of geometric and material information from
the impostors, there might still be holes or inaccuracies in the target
view, especially when the deviation between the target and refer-
ence views is significant. To fill these holes and filter out inaccurate
information, we employ a two-stage filtering method.

e Stage 1: First, we divide the target view into multiple blocks.
Within each block, we filter and repair the existing informa-
tion. We start by removing invalid back-facing information (de-
termined by the normal vector 7 and the target view direction).
Next, we apply joint bilateral filtering to the geometric and mate-
rial information within each block to ensure the reliability of the
information. This process is described by the following equation:

Z‘fP;EN(pF) w(ps, Pe) * {Q_,M}
L. en(p) W(ps: Pe)

{G, M} =

where G, M represent the filtered information, p, is the posi-
tion of the filtered information, and N(p.) is the block contain-
ing pc. This stage of filtering is quite conservative. Although a

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

large neighborhood of information is considered, some informa-
tion still fails to be correctly filtered.

e Stage 2: To further repair holes and inaccuracies in the target
view, we introduce thin object detection method, inspired by
FSR 2 [AMD22]. This method analyzes the depth information to
identify thin object regions and fills in the missing details based
on surrounding context. In this stage, only the normal 7 and
depth information d are filtered and repaired. This method effec-
tively detects missing information and ensures the completeness
of the target view.

Reshading. After the gather filtering stage, we obtain accurate
and complete geometric and material information in the target view.
In this stage, these details are used for the final reshading calcula-
tion. The reshading formula is as follows:

L(Oﬂ/?i) = F(07w7gAyM7Bm7CI)

where o represents the object, W represents the light direction, §
is the filtered geometric information, M is the material informa-
tion, By, is the material parameter cache containing albedo, metal-
licity, and roughness, and C; represents the target view. Similar to
conventional visibility buffer [BH13] shading processes, we first
reconstruct the G-buffer based on G and M before performing fi-
nal shading.

During reshading, we traverse the compressed material IDs in
the impostors and compute a weighted average based on their
weight ratios in the target view, ultimately synthesizing the ren-
dered result for the target view. This process ensures that the mate-
rial information between different impostors is correctly combined,
generating a high-quality target view. Because we have stored the
material IDs, we can perform editable reshading and modify the
material information as needed.

4.3. Editable Reshading with LoD

To accelerate the forward mapping process and ensure consistent
rendering effects at different view distances, we select the impos-
tor’s LoD based on the target view distance and the input object’s
radius. According to the Nyquist sampling theorem, the LoD is cal-
culated as follows:

l
L=1 -
ng(r)
where L represents the LoD of the impostor, [is the view dis-
tance, and r is the radius of the input object. This method allows

us to choose the appropriate impostor LoD under different viewing
conditions, ensuring rendering quality.

5. Result and Analysis
5.1. Experimental Setup

We evaluate our method on an Intel i9-12900K 16-core proces-
sor (3.2GHz) with 128GB of RAM and a single NVIDIA GeForce

6 0f 9 X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering

w7

Impostor

Impostor

x10 MSE

Impostor b

1 Billboard

Impostor

x10 MSE

Figure 3: Quality Comparison. The top row presents the RABBIT scene and PEPE LE scene, while the bottom row shows the TEAPOT
scene and DAVID scene. Each scene is illuminated by an environment light and a single area light. The Billboard results were rendered
using Unreal Engine (UE), while the Impostor results were generated in Blender. Ours utilizes 18 impostors. Consistent lighting conditions
maintained across all methods, including Ours and the GT. The MSE indicates the rendering error of Ours compared to the GT.

RTX 4090 GPU with 24GB of video memory. Our implementa-
tion is based on Vulkan. For comparison, we use UE’s Impostor
Baker [Epil8] to generate multi-card billboards, and Blender’s plu-
gin Instant Impostor Baker [Ale23] for the traditional impostor
method. The ground-truth is generated via rasterization and tradi-
tional deferred shading pipeline. Since our focus lies in evaluating
the accuracy of geometric and material representation in Ril.oD,
we render only direct lighting without any shadow effects. All im-
ages are rendered at a resolution of 1024 x 1024.

As discussed in Section 4.1, RiLoD is constructed from multiple
viewpoints and stores geometric and material information in two
separate textures. In our implementation, we typically employ 6 to
18 views to capture object details. These views are selected based
on regular polyhedral configurations to ensure uniform coverage.
For compat storage, 7i are encoded using 2D octahedral coordinates
and stored together with depth (d) and transparency (o) in a single
R32G32B32A32 texture. The uv are compressed into a 32-bit float,
and the material IDs are similarly compressed into another 32-bit
float, both of which are stored together in an R32G32 texture. In
practice, at higher LoD levels, we encode the material count per im-
postor group (assuming <8 materials) using a single 32-bit UINT,
where each 4-bit segment represents the count of a distinct material
per pixel.

In Section 4.2, the bilateral filter weight w(ps, p¢) used in Gather

Filtering is computed as the product of several weighting terms:

w(ps,pc) = Wspatial (ps,pc) - Weeometry (ps,pe)
“Wnormal (Ps, Pe) - Wdepth (Pss pe)

Here, wgpatial and wgeomerry represent the screen-space and
world-space distances between the neighboring pixel ps and the
center pixel pc, respectively. wyormal and wyepn, measure the con-
sistency of surface orientation and depth, respectively, and are de-
signed to suppress contributions from pixels with significantly dif-
ferent geometric properties.

Scene DEER BUNNY PEPE LE TEAPOT DAVID
Tri Count 33053 | 536406 | 570992 500738 | 31317506
Storage (MB) | 35.53 44.78 30.68 28.585 22.935

Table 1: Test Scenes Scale and RiLoD Storage. The storage is com-
pressed using Block Compression [Khr25].

We evaluate our method across five representative scenes, each
designed to highlight common challenges in rasterization: com-
plex textures (the DEER scene), discontinuous depth (the BUNNY
scene), high-frequency reflections (the PEPE LE scene), complex
normal maps (the TEAPOT scene), and large-scale geometry (the
DAVID scene). The scale and characteristics of each scene are sum-
marized in Table 1.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering 70f9

Scene MSE LPIPS
Ours | Billboard | Impostor | Ours | Billboard | Impostor
DEER 0.003 0.040 0.007 0.005 0.150 0.064
BUNNY | 0.013 0.080 0.034 0.014 0.205 0.184
PEPE LE | 0.002 0.056 0.018 0.001 0.144 0.063
TEAPOT | 0.002 0.025 0.008 0.002 0.119 0.047
DaviD | 0.001 0.033 0.009 0.012 0.080 0.057

Table 2: Objective Quality Comparison. We calculated the quality
and perceptual metrics between different methods and their GT.
Specifically, the Billboard and Impostor methods were compared
with the GT generated in UE and Blender, respectively. The best
quality is marked in bold.

6-Impostor 12-Impostor 18-Impaostor

Figure 4: Multi scale impostors Comparison. The selection of LoD
levels is dependent on the complexity of the object. Only 6 impos-
tors are available, some information is missing. With 12 impostors,
the information in simpler scenes is nearly complete, though some
details are still missing. When 18 impostors are employed, RiLoD
can robustly represent complex scenes while significantly reducing
rendering costs.

5.2. Quality Analysis

Our method method was compared with the multi-card billboard of
UE and the tranditional impostor in Blender. Figure 1 and Figure 3
show the direct lighting results obtained by rendering with RiLoD
in five different scenes, while cropped regions further highlight the
visual differences among the compared techniques. Traditional im-
postor and billboard struggle to maintain accuracy when render-
ing complex geometry, ofen leading to incorrect filling in discon-
tinuous regions (the BUNNY scene). In areas with high-frequency
details (the TEAPOT scene), these methods tend to produce exces-
sive blurring. Furthermore, since they only store albedo and normal
information, they are unable to capture reflective effects resulting
from low roughness and high metallic (the DAVID scene and PEPE
LE scene). Table 2 shows that we can achieve better quality com-
pared to Impostor and Billboard. Our outperforms both multi-card
billboard and traditional impostor, both in terms of subjective vi-
sual quality and objective metrics.

The representation capability of RiLoD at different scales was
also evaluated, as shown in Figure 4. We demonstrate the results on
a simple purely reflective scene (the PEPE LE scene) and a more
complex scene with intricate occlusion and materials (the DEER
scene). When fewer impostors are used, our method still provides
accurate geometric and material information, though some details

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

FPS: 1264 FPS: 904

FPS: 904

Figure 5: Lod Comparison. As the distance between the target view
and the object increases, the absence of LOD queries leads to flick-
ering of high-frequency information in the results. The GT is ob-

tained using 2x SSAA.
.

GT
0.00097 0.00095 MSE

Durs w/ Filter

Figure 6: Hole-filling Filtering effect. By incorporating filtering,
we compensate for the inaccuracies introduced by imperfect for-
ward mapping, thereby improving the quality of the rendered re-
sults.

are missing. As the number of impostors increases, the missing in-
formation is filled in, and the geometric and material details be-
come more accurate.

Figure 5 shows the results of our level-of-details module effect.
When using RiLoD, as the target view moves farther from the cam-
era, our method automatically switches to a higher-level LoD, re-
sulting in more stable outcomes and reduced rendering overhead.

Our filter module effectively fills holes and corrects inaccuracies
introduced by the forward mapping process, as shown in Figure 6.
With the application of this module, we obtain more precise mate-
rial and geometric information, which subsequently enhances the
rendering quality.

Additionally, we demonstrate in Figure 1 that RiLoD allows for
the editing of material properties of input objects and supports ren-
dering under arbitrary lighting conditions.

5.3. Performance Analysis

Table 1 presents the storage overhead of RiLoD after compres-
sion using Block Compress [Khr25]. We applied BC5 and BC7 for

80of9

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering

Scene Proxy Gen Forward Mapping Surfel Filtering Shading Total
6-Imp. | 12-Imp. | 18-Imp. | 6-Imp. | 12-Imp. | 18-Imp. | 6-Imp. | 12-Imp. | 18-Imp. \ 6-Imp. 12-Imp. 18-Imp.
Deer 4 6 29 0.08 0.18 0.30 0.09 0.10 0.10 0.05 0.22 (1230 fps) | 0.35 (1090 fps) | 0.45 (950 fps)
Bunny 8 15 171 0.08 0.2 0.37 0.12 0.12 0.12 0.06 0.26 (1217 fps) | 0.38 (1030 fps) | 0.55 (850 fps)
Pepe Le 8 15 193 0.08 0.2 0.33 0.09 0.09 0.09 0.05 0.22 (1266 fps) | 0.34 (1087 fps) | 0.47 (929 fps)
Teapot 5 13 155 0.06 0.17 0.26 0.09 0.09 0.09 0.05 0.20 (1324 fps) | 0.31 (1090 fps) | 0.40 (1038 fps)
David 182 491 8610 0.06 0.17 0.26 0.10 0.11 0.11 0.05 0.21 (1283 fps) | 0.33 (1100 fps) | 0.42 (1010 fps)

Table 3: Render time (in ms) using RiLoD. We recorded the rendering times required by RiLoD at three scales: 6-Impostor, 12-Impostor, and
18-Impostor. Additionally, we measured the actual frame rates achieved during rendering.

2x compression. The storage overhead of RiLoD is fully accept-
able under current hardware conditions. Compared to the multi-
card Billboard method for storing identical material parameters,
our method, utilizing a compact storage design, maintains at least
a comparable storage footprint for materials with simple parame-
terizations and reduces storage overhead by approximately 38% to
50% for materials characterized by complex textures.

Table 3 presents the rendering time costs using RilL.oD at differ-
ent scales. The method consistently achieves high performance on
all scales. By incorporating our LoD strategy, which further reduce
memory bandwidth consumption and accelerate forward mapping,
replacing interpolation between impostors with more accurate for-
ward mapping is fully feasible. Note that the total rendering time
may exceed the actual sum of rendering pass time due to additional
overhead, such as CPU-side state management.

5.4. Limitation and Discussion

Although RiLoD has significantly improved in expressing distant
objects and supports efficient rendering, our method still has some
limitations.

High-frequency geometry structures. RiLoD has difficulty ac-
curately representing high-frequency structures, such as hair or leaf
veins. Although forward mapping is precise, small changes in per-
spective can cause large variations in the mapped results when ob-
jects are very thin, especially when information from different im-
postors conflicts at the object boundaries.

Morphing objects. RiLoD handles rigid transformations well,
but real-time updates are needed when the proxied object deform,
leading to high computational costs. However, frame-based updates
can be used in practical applications to support dynamic objects. It
is important to note that our method imposes no limitations on rigid
animation.

Editing of geometric information. RiLoD cannot directly edit
geometric information. The impostors must maintain geometric
consistency, and any change in geometry requires updating all re-
lated information in RiLoD.

Refraction. RiLoD supports the rendering of translucent and
transparent objects by accounting for intrinsic transparency in the
alpha computation; however, it does not currently handle cases in-
volving refraction.

6. Conclusions And Future Work

In this paper, we introduce a new image-based representation de-
signed for real-time distant objects rendering. By enabling both re-

shading and LoD, our method achieves high rendering efficiency
while maintaining geometric and material fidelity under dynamic
lighting and varying material conditions. The compact storage de-
sign of geometric and material information significantly reduces
memory overhead, enabling seamless integration into modern real-
time rendering pipelines. Our forward mapping strategy, combined
with a hybrid hole-filling approach, mitigates the artifacts com-
monly introduced by simple view interpolation in prior methods,
resulting in rendered outputs that more closely align with the
ground-truth. Quantitative evaluations and qualitative comparisons
demonstrate that RiLoD not only outperforms existing impostor
and billboard techniques in rendering quality, but also maintains
low overhead in both storage and performance, making it a practi-
cal solution for rendering large-scale scenes with complex distant
objects.

Future work may explore integrating our algorithm with virtual
reality (VR) systems to enable efficient rendering of distant objects
in large-scale immersive environments. In addition, while our cur-
rent method focuses on local lighting, an important direction is to
extend the algorithm to support global illumination, including mul-
tiple light bounces. Although we have proposed a compact storage
design, further optimization is desirable for handling large-scale
scenes. In particular, exploring more advanced compression tech-
niques could help reduce storage requirements and improve run-
time performance — especially on devices with limited memory and
bandwidth.

Acknowledgments. We thank the reviewers for their valuable
comments. This work has been partially supported by the National
Natural Science Foundation of China (No. 62272275), the Taishan
Scholars Program (No. tsqn202312231), Qilu University of Tech-
nology (Shandong Academy of Sciences) Faculty of Computer Sci-
ence and Technology Pairing Program (No. 2024JDJH13).

References

[Ale23] ALEX. Instant Impostors v1.3 | One-click Impostor Generation
(EEVEE) - Blender Market. [Online; accessed 2025-04-07]. 2023. URL:

https : / / blendermarket . com / products / instant -
impostors —- one - click - impostor - generation -
eevee 6.

[AMD22] AMD. AMD FidelityFX™ Super Resolution 2 (FSR 2) - AMD
GPUOpen. [Online; accessed 2025-03-31]. 2022. URL: https : / /
gpuopen.com/fidelityfx—-superresolution-2/2,5.

[BH13] BURNS, CHRISTOPHER A and HUNT, WARREN A. “The visibil-
ity buffer: a cache-friendly approach to deferred shading”. Journal of
Computer Graphics Techniques (JCGT) 2.2 (2013), 55-69 2, 5.

[Bli82] BLINN, JAMES F. “A generalization of algebraic surface drawing”.
ACM transactions on graphics (TOG) 1.3 (1982), 235-256 2.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://blendermarket.com/products/instant-impostors--one-click-impostor-generation-eevee
https://blendermarket.com/products/instant-impostors--one-click-impostor-generation-eevee
https://blendermarket.com/products/instant-impostors--one-click-impostor-generation-eevee
https://gpuopen.com/fidelityfx-superresolution-2/
https://gpuopen.com/fidelityfx-superresolution-2/

X. Wu, Z. Zeng, J. Zhu, & L. Wang / Reshadable Impostors with Level-of-Detail for Real-Time Distant Objects Rendering 90f9

[BMT*21] BARRON, JONATHAN T, MILDENHALL, BEN, TANCIK,
MATTHEW, et al. “Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields”. Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2021, 5855-5864 2.

[Brul8] BRUCKS, RYAN. Octahedral Impostors. [Online; accessed 2025-
03-31]. 2018. URL: https : / / shaderbits . com / blog /
octahedral-impostors 3.

[Conl17] CONFERENCE, GAME DEVELOPERS. Automated Level of De-
tail Generation for Halo Reach - YouTube. [Online; accessed 2025-05-
27]. 2017. URL: https : / / www . youtube . com / watch?v=
tnzcuJOTlek 2.

[DDSDO03] DECORET, XAVIER, DURAND, FREDO, SILLION, FRANCOIS
X, and DORSEY, JULIE. “Billboard clouds for extreme model simplifi-
cation”. ACM SIGGRAPH 2003 Papers. 2003, 689-696 3.

[DHI*13] DUPUY, JONATHAN, HEITZ, ERIC, IEHL, JEAN-CLAUDE, et
al. “Linear efficient antialiased displacement and reflectance mapping”.
ACM Transactions on Graphics (TOG) 32.6 (2013), 1-11 2.

[DKY*00] DOBASHI, YOSHINORI, KANEDA, KAZUFUMI, YAMASHITA,
HIDEO, et al. “A simple, efficient method for realistic animation of
clouds”. Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques. 2000, 19-28 3.

[DSSD99] DECORET, XAVIER, SILLION, FRANCOIS, SCHAUFLER, GER-
NOT, and DORSEY, JULIE. “Multi-layered impostors for accelerated ren-
dering”. Computer Graphics Forum. Vol. 18. 3. Wiley Online Library.
1999, 61-73 3.

[Epil8] EPIC. Impostor Baker Plugin in Unreal Engine | Unreal Engine
5.5 Documentation | Epic Developer Community. [Online; accessed
2025-04-07]. 2018. URL: https : / / dev . epicgames . com /
documentation / en - us / unreal - engine / impostor —
baker-plugin-in-unreal-engine 6.

[Fer*04] FERNANDO, RANDIMA et al. GPU gems: programming tech-
niques, tips, and tricks for real-time graphics. Vol. 590. Addison-Wesley
Reading, 2004 3.

[ForO1] FORSYTH, TOM. “Impostors: adding clutter”. Game programming
gems 2 (2001), 488-496 3.

[FPRJOO] FRISKEN, SARAH F, PERRY, RONALD N, ROCKWOOD, ALYN
P, and JONES, THOUIS R. “Adaptively sampled distance fields: A gen-
eral representation of shape for computer graphics”. Proceedings of the
27th annual conference on Computer graphics and interactive tech-
niques. 2000, 249-254 2.

[Guy00] GUYMON, MEL. “Pyro-techniques: Playing with fire”. Game De-
veloper 7.2 (2000), 23-27 3.

[HFTF15] HE, YONG, FOLEY, THERESA, TATARCHUK, NATALYA, and
FATAHALIAN, KAYVON. “A system for rapid, automatic shader level-
of-detail”. ACM Transactions on Graphics (TOG) 34.6 (2015), 1-12 2.

[Kar] KARIS, BRIAN. Graphic Rants: Normal map filtering using
vMF (part 3). [Online; accessed 2025-03-28]. URL: https : / /
graphicrants .blogspot .com/2018/05/normal —map—
filtering-using-vmf-part-3.html 4.

[Khr25] KHRONOS. Compressed Image Formats :: Vulkan Documentation
Project. [Online; accessed 2025-04-07]. 2025. URL: https://docs.
vulkan.org/spec/latest/appendices/compressedtex.
html 6, 7.

[KKLD23] KERBL, BERNHARD, KOPANAS, GEORGIOS, LEIMKUHLER,
THOMAS, and DRETTAKIS, GEORGE. “3d gaussian splatting for real-
time radiance field rendering.” ACM Trans. Graph. 42.4 (2023), 139-
12.

[KL16] KLINT, JOSH and LENGYEL, ERIC. Vegetation Management in
Leadwerks Game Engine 4. CRC Press, 2016 3.

[KS02] KAWASAKI, SHUNTARO YAMAZAKI RYUSUKE SAGAWA HI-
ROSHI and SAKAUCHI, KATSUSHI IKEUCHI MASAO. “Microfacet bill-
boarding”. 13th Eurographics Workshop on Rendering: Pisa, Italy.
2002, 169 3.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

[LC98] LORENSEN, WILLIAM E and CLINE, HARVEY E. “Marching
cubes: A high resolution 3D surface construction algorithm”. Seminal
graphics: pioneering efforts that shaped the field. 1998, 347-353 2.

[LPC*00] LEvVOY, MARC, PULLI, KARI, CURLESS, BRIAN, et al. “The
digital Michelangelo project: 3D scanning of large statues”. Proceed-

ings of the 27th annual conference on Computer graphics and interactive
techniques. 2000, 131-144 2.

[MB05] MCREYNOLDS, TOM and BLYTHE, DAVID. Advanced graphics
programming using OpenGL. Elsevier, 2005 3.

[MRS*21] MARTIN-BRUALLA, RICARDO, RADWAN, NOHA, SAJJADI,
MEHDI SM, et al. “Nerf in the wild: Neural radiance fields for uncon-
strained photo collections”. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021, 7210-7219 2.

[MSO*19] MILDENHALL, BEN, SRINIVASAN, PRATUL P, ORTIZ-
CAYON, RODRIGO, et al. “Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines”. ACM Transactions on Graph-
ics (ToG) 38.4 (2019), 1-14 3.

[MST#21] MILDENHALL, BEN, SRINIVASAN, PRATUL P, TANCIK,
MATTHEW, et al. “Nerf: Representing scenes as neural radiance fields
for view synthesis”. Communications of the ACM 65.1 (2021), 99-106 2.

[OB10] OLANO, MARC and BAKER, DAN. “Lean mapping”. Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games. 2010, 181-188 2.

[PFS*19] PARK, JEONG JOON, FLORENCE, PETER, STRAUB, JULIAN, et
al. “Deepsdf: Learning continuous signed distance functions for shape
representation”. Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, 165-174 2.

[PHC*97] PuLLI, KARI, HOPPE, HUGUES, COHEN, MICHAEL, et al.
“View-based rendering: Visualizing real objects from scanned range and
color data”. Rendering Techniques’ 97: Proceedings of the Eurograph-
ics Workshop in St. Etienne, France, June 16—18, 1997 8. Springer.
1997, 23-34 3.

[PMDS06] PoPESCU, VoiCcU, MEI, CHUNHUI, DAUBLE, JORDAN, and
SACKS, ELISHA. “Reflected-scene impostors for realistic reflections at
interactive rates”. Computer Graphics Forum. Vol. 25. 3. Wiley Online
Library. 2006, 313-322 3.

[PZVGOO0] PFISTER, HANSPETER, ZWICKER, MATTHIAS, VAN BAAR,
JEROEN, and GROSS, MARKUS. “Surfels: Surface elements as render-
ing primitives”. Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 2000, 335-342 3.

[QSMG17] Qi, CHARLES R, Su, HAO, M0, KAICHUN, and GUIBAS,
LEONIDAS J. “Pointnet: Deep learning on point sets for 3d classification
and segmentation”. Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2017, 652-660 2.

[QYSG17] Qi1, CHARLES RUIZHONGTAL, Y1, LI, SU, HAO, and GUIBAS,
LEONIDAS J. “Pointnet++: Deep hierarchical feature learning on point
sets in a metric space”. Advances in neural information processing sys-
tems 30 (2017) 2.

[Ris06] RISSER, ERIC. “True imposters.” SIGGRAPH Research Posters.
2006, 58 3.

[SALP0O5] SZIRMAY-KALOS, LASZLO, ASZODI, BARNABAS, LAZANYI,
ISTVAN, and PREMECZ, MATYAS. “Approximate ray-tracing on the gpu
with distance impostors”. Computer graphics forum. Vol. 24. 3. Citeseer.
2005, 695-704 3.

[SCK08] SHUM, HEUNG-YEUNG, CHAN, SHING-CHOW, and KANG,
SING BING. Image-based rendering. Springer Science & Business Me-
dia, 2008 2, 3, 5.

[VK06] VICHITVEJPAISAL, PHONGVARIN and KANONGCHAIYOS, P1z-
ZANU. “Enhanced billboards for model simplification”. (2006) 3.

[ZBX*21] ZHU, JUNQIU, BAI, YAOYI, XU, ZILIN, et al. “Neural com-
plex luminaires: representation and rendering.” ACM Trans. Graph. 40.4
(2021), 57-1 3.

https://shaderbits.com/blog/octahedral-impostors
https://shaderbits.com/blog/octahedral-impostors
https://www.youtube.com/watch?v=tnzcuJOT1ek
https://www.youtube.com/watch?v=tnzcuJOT1ek
https://dev.epicgames.com/documentation/en-us/unreal-engine/impostor-baker-plugin-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/impostor-baker-plugin-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/impostor-baker-plugin-in-unreal-engine
https://graphicrants.blogspot.com/2018/05/normal-map-filtering-using-vmf-part-3.html
https://graphicrants.blogspot.com/2018/05/normal-map-filtering-using-vmf-part-3.html
https://graphicrants.blogspot.com/2018/05/normal-map-filtering-using-vmf-part-3.html
https://docs.vulkan.org/spec/latest/appendices/compressedtex.html
https://docs.vulkan.org/spec/latest/appendices/compressedtex.html
https://docs.vulkan.org/spec/latest/appendices/compressedtex.html

